小初高个性化教学
官方指定报名网点
课外全科辅导补习全程、多方位、多科目细心服务
初中语文阅读理解解题技巧与方法,语文阅读理解题是一种综合性的题型,它能有效地检测学生的阅读理解能力和语文素质,平心静气审题,切忌粗心,按照由易到难,由浅入深的思维方式,逐渐的打开思路,认真看清每一个字、词、句、甚至每一个标点,要看清题目的要求,分析问题的提问要点,例如要求在正确的句子后面打“√”,有的同学在正确的句子后面打“√”后,又多此一举地在错误的句子后打上了“×...
官方指定报名网点
课外全科辅导补习全程、多方位、多科目细心服务
省力又省心
教学更透明,课后报告及时反馈
面对面专属订制学习计划,乐享学习
1对1专项辅导,小组课多人互动
上课时间*,有问题马上解决
视频画面实时互动,授课过程随时旁听
-在线咨询
全年级学科辅导
系统性教学,重点难点针对性指导难点针对辅导,反复练习,加深印象理解文学,发现文学的兴趣点规划复习,定制目标,巩固训练
选择、填空、计算等题型训练培养逻辑思维能力,学习解题思路总结做题技巧,掌握解题方法
音标学习及发音教学看字读音,听音拼字培养提高阅读能力
小初知识衔接眼脑直映的阅读方式归纳总结等能力素材运用融会贯通文学常识等专项辅导
难点针对辅导,学习解题思路函数、方程、根式等针对讲解总结做题技巧,掌握解题方法数据收集整理描述,函数解析
基础知识衔接巩固,音标学习及发音教学,看字读音,听音拼字,培养提高阅读能力,指导英语写作技巧
系统性教学,重点难点针对性指导难点针对辅导,反复练习,加深印象理解文学,发现文学的兴趣点规划复习,定制目标,巩固训练
难点针对辅导,学习解题思路总结做题技巧,掌握解题方法概念、释义、运算等模块辅导复习规划,个性化复习方案
基础知识衔接巩固单词语法全掌握提炼信息归纳主旨要义音标学习及发音教学看字读音,听音拼字培养提高阅读能力指导英语写作技巧
小学课程
小升初
初中课程
高中课程
中考课程
高考课程
在线咨询
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
免费为您提供优质的机构
稍后会有专业老师给您回电,请保持电话畅通
易达招生网@版权所有 豫ICP备12014175号
本站文章由用户自行上传发布,如有侵权内容请及时联系我们删除。