总站首页 | 合作模式 您好,欢迎访问易达招生网,希望本篇文章能够给您带来帮助!

电话咨询 在线客服 预约试听

易达招生网 > 动态汇总 > 中小学辅导> 安阳初中一对一培训班本地名气大的

安阳初中一对一培训班本地名气大的
中小学辅导 2021-06-17 11:13:22 107
导语概要

中小学辅导是专门致力于中小学课外辅导的*品牌机构,提供中小学课程辅导服务,包括高中课程辅导,高考一对一辅导,高考全托辅导,高考补习班,初中课程辅导,小学课程辅导等,在天津西安武汉等地都有校区,名师辅导,专属老师进行一对一精心授课,实施有针对性的辅导,因学生个人情况采取不同的授课方式和提升策略,学习效果监控与家长密切联系,通过电话和家访,监测学习效果,并对老师全程管理,直达目标,掌握学习方法,端正学习态度,提高学习效率,使综合素质全面跃升,直达目标...

  • 中小学全科辅导

    中小学辅导

    专业中小学全科辅导

    小学初中高中辅导,一对一,小班课

初中数学补习到底多少钱-初中数学矩形、菱形、正方形考点及题型

一、矩形、菱形、正方形的性质

1.矩形的性质

①具有平行四边形的一切性质;

②矩形的四个角都是直角;

③矩形的对角线相等;

④矩形是轴对称图形,它有两条对称轴;

⑤直角三角形斜边上的中线等于斜边的一半。

2.菱形的性质

①具有平行四边形的一切性质;

②菱形的四条边都相等;

③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;

④菱形是轴对称图形,每条对角线所在的直线都是它的对称轴;

⑤菱形的面积=底×高=对角线乘积的一半。

3.正方形的性质

正方形具有平行四边形,矩形,菱形的一切性质

①边:四边相等,对边平行;

②角:四个角都是直角;

③对角线:互相平分;相等;且垂直;每一条对角线平分一组对角,即正方形的对角线与边的夹角为45度;

④正方形是轴对称图形,有四条对称轴。

例1 矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为 ( )

A.360 B.90

C.270 D.180

例2 如图,矩形ABCD中,AE⊥BD于点E,对角线AC与BD相交于点O,BE:ED=1:3,AB=6cm,求AC的长。

例3 如图, O是矩形ABCD 对角线的交点, AE平分 ∠BAD,∠AOD=120° ,求∠AEO 的度数。

例4 菱形的周长为40cm,两邻角的比为1:2,则较短对角线的长________ 。

例5 如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.

二、矩形、菱形、正方形的判定

1.矩形的判定

①有一个内角是直角的平行四边形是矩形;

②对角线相等的平行四边形是矩形;

③有三个角是直角的四边形是矩形;

④还有对角线相等且互相平分的四边形是矩形。

2.菱形的判定方法

①有一组邻边相等的平行四边形是菱形;

②对角线互相垂直的平行四边形是菱形;

③四条边都相等四边形是菱形;

④对角线垂直平分的四边形是菱形。

3.正方形的判定

①菱形+矩形的一条特征;

②菱形+矩形的一条特征;

③平行四边形+一个直角+一组邻边相等。

说明一个四边形是正方形的一般思路是:先判断它是矩形,在判断这个矩形也是菱形;或先判断它是菱形,再判断这个菱形也是矩形。

例1. 如图,在△ABC中,AB=AC,点D是边BC的中点,过点A、D分别作BC与AB的平行线,并交于点E,连续EC、AD。

求证:四边形ADCE是矩形。

例2.如图,△ABC中,∠C=90°,AD平分∠BAC,ED⊥BC,DF//AB.

求证:AD与EF互相垂直平分。

例3.已知如图,在△ABC,∠ACB=900,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF∥BC。

求证:四边形CDEF是菱形。

三、矩形、菱形、正方形

与函数综合题

1.利用矩形、菱形、正方形的知识解决函数问题;

2.利用函数知识解决矩形、菱形、正方形的问题;

例1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).

(1)求k的值;

(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离。

例2.如图,点B、C分别在两条直线y=2x和y=kx上,点A、D是x轴上两点,已知四边形ABCD是正方形,则k值为______.

例3 已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.

(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;

(2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式。

四、矩形、正方形的翻折

1.从翻折中找出对称轴,利用对称性找相等关系。

2.利用相等关系建立方程解决问题。

例1 如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若CF=1,FD=2,则BC的长是( )

A.3√6 B.2√6

C.2√5 D.2√3

例2 如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为(  )

A.1或2 B. 2或3

C.3或4 D. 4或5

例3 如图,在边长为1的正方形ABCD中,E为AD边上一点,连接BE,将△ABE沿BE对折,A点恰好落在对角线BD上的点F处。延长AF,与CD边交于点G,延长FE,与BA的延长线交于点H,则下列说法:①△BFH为等腰直角三角形;②△ADF≌△FHA; ③∠DFG=60°;④DE=2-√2;⑤S△AEF=S△DFG.其中正确的说法有( )

A.1个  B.2个

C.3个 D.4个

例4 四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H。

(1)如图1,猜想AH与AB有什么数量关系?并证明。

(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长。

五、综合运用

1.计算。利用矩形、菱形、正方形中的等腰三角形和直角三角形进行计算。

2.证明。利用矩形、菱形、正方形的性质和判定,结合全等三角形、等腰三角形、等边三角形的知识展开证明。

3.探究。利用矩形、菱形、正方形等知识展开探究。

例1 在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.

(1)小明发现DG⊥BE,请你帮他说明理由.

(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.

(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由。

例2 现有两个具有一个公共顶点的等腰直角三角形△ADE和△ABC,其中∠ACB和∠AED=90°,且AC=BC,AE=DE,CF⊥AB于F,M为线段BD中点,连接CM,EM.

(1)如图1,当A、B、D在同一条直线上时,若AC=1,AE=2,求FM的长度;

(2)如图1,当A、B、D在同一条直线上时,求证:CM=EM;

(3)如图2,当A、B、D在同一条直线上时,请探究CM,EM的数量关系和位置关系,请先给出结论,然后证明。


中高考冲刺辅导,中小学全科教育-一对一辅导


中高考冲刺辅导,中小学全科教育-小学全科辅导

中小学辅导是专门致力于中小学课外辅导的*品牌机构,提供中小学课程辅导服务,包括高中课程辅导,高考一对一辅导,高考全托辅导,高考补习班,初中课程辅导,小学课程辅导等,在天津西安武汉等地都有校区,名师辅导,专属老师进行一对一精心授课,实施有针对性的辅导,因学生个人情况采取不同的授课方式和提升策略,学习效果监控与家长密切联系,通过电话和家访,监测学习效果,并对老师全程管理,直达目标,掌握学习方法,端正学习态度,提高学习效率,使综合素质全面跃升,直达目标。


中高考冲刺辅导,中小学全科教育-名师辅导

03 开放式英语辅导模式,激发潜能
英语体系融会贯通
强化学生建立起章节知识和年级学科整体整体体系的关系脉络,从整体上把握英语知识结构;锻炼发散思维,养成联想的学习习惯
长期目标+阶段目标
帮助孩子建立起自己的英语日常学习习惯,制定合乎自身发展的长期目标,并分阶段建立努力实现的不同短期目标,增强英语成就感
激励式评价体系
根据学生实际设计教学方案,并设计实时的教学评价模块,精确获取学生课堂收获,并通过评价系统来不断挖掘学生潜能
回归现实源自生活
以英语知识在现实生活的活学活用来激发学习兴趣,用英语知识来收集多学科多方面问题、用英语思维分析问题、用英语思路来解决问题
建立兴趣持久动力
掌握正确的英语学习方法,树立英语必胜的信心,以正确的态度面对英语学习中的各种困难和问题。逐渐培养学习英语的兴趣

中高考冲刺辅导,中小学全科教育-三大承诺

易达招生网@版权所有 豫ICP备12014175号

本站文章由用户自行上传发布,如有侵权内容请及时联系我们删除。