总站首页 | 合作模式 您好,欢迎访问易达招生网,希望本篇文章能够给您带来帮助!

电话咨询 在线客服 预约试听

易达招生网 > 动态汇总 > 新文道考研> 铜川考研培训班哪个好

铜川考研培训班哪个好
新文道考研 2022-05-21 16:44:29 99

铜川考研培训班哪个好,作为专注考研领域的教育集团,北京新文道教育科技集团致力于考研赛道的深耕,以“好老师、好课程、好产品、好资料、好服务、好管理”为优势,充分发挥顶级师资团队、成熟课程体系、完善教学服务的优势,成就广大学子的考研梦想。公司业务范围涵盖考试研究、课程研发、图书发行、题库开发、测评答疑服务等多个版块,多角度、全方位、立体化地为考研学子保驾护航。...

新文道考研

北京新文道教育科技集团在考研培训领域采用线上线下融合的OMO智能学习系统——凤凰计划,充分利用互联网、大数据、人工智能、云计算等技术创新成果,研发系列线上精品课程,同时结合线下小班课的强互动与沉浸式学习,帮助考生提升学习效率,让备考更简单、更高效、更轻松、更有趣。...

新文道考研

超给力校园人文环境重点推荐

教室,自习室
教室,自习室
学习氛围浓厚
固定班级
固定班级
小班授课,跟踪管理


研友集结
研友集结
誓师
运动空间
运动空间
足球、篮球场、健身房

考研辅导机构前十

1.新东方考研

2.新文道教育

3.海文教育

4.硕成考研

5.可锐教育

6.启航考研

7.中公考研

8.新航道考研

9.文都考研

10.点对点考研

新文道考研

数学冲刺:线性代数的重点内容统计

线性代数在考研数学一、二、三中都占了不小的比例,其重要性不容忽视。而在冲刺阶段总结性的知识是必不可少的,线性代数也是一样,希望这次对线代重点内容的总结能够对大家的复习有所助益。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有*的行列式的试题,必然会在其他章、节的试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算。

矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。

特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。

由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

希望大家在考研时间紧张,政治任务量大的同时也能重视数学的复习,愿大家取得好成绩。

上面那些关于铜川考研培训班哪个好的解答只是小编个人的观点,如果您还有什么其他的观点或者想要详细了解铜川考研培训班哪个好相关的问题,欢迎您和小编沟通。

易达招生网@版权所有 豫ICP备12014175号

本站文章由用户自行上传发布,如有侵权内容请及时联系我们删除。