一、文都考研
二、高途考研
三、研途考研
四、中公考研
五、海文考研
六、启航考研
七、新东方考研
八、新文道考研
九、学信考研
十、金程考研
以上排名仅供参考,考生在选择考研机构时,应根据自身需求(如基础水平、目标院校、自律性等)综合考量,建议实地考察、试听课程,并参考往届学员评价,选择最适合自己的考研机构。
【培训对象】:
1、在职人员:希望在工作之余通过考研提升自身学历和竞争力的在职人员。
2、考研自学者:虽然有一定的自学能力,但缺乏系统的复习计划和有效的应试技巧的考研自学者。
3、需要快速提高成绩的学员:希望在短时间内快速提高考研笔试成绩的学员。
【授课内容】:
1、基础知识复习:针对考研笔试中的公共科目(如英语、政治、数学等)和专业课,进行系统的知识梳理和复习,帮助学员巩固基础,解决知识盲点。
2、重点难点讲解:根据考研大纲和历年试题,提炼出考试的重点和难点,进行深入的讲解和剖析,帮助学员掌握核心考点。
3、应试技巧训练:针对考研笔试的题型和难度特点,进行应试技巧的训练,包括时间管理、答题策略等,提高学员的解题速度和准确率。
4、模拟考试与试题解析:定期组织模拟考试,模拟真实考场环境,帮助学员熟悉考试流程,锻炼应试心理。同时,对历年试题进行详细解析,帮助学员了解考试题型和出题规律。
【辅导目标】:
1、帮助学员系统复习考研笔试所需的知识点,巩固基础。
2、提高学员的解题速度和准确率,掌握有效的应试技巧。
3、通过模拟考试和试题解析,帮助学员熟悉考试题型和出题规律,增强应试信心。
4、最终帮助学员顺利参与考研笔试,实现自己的考研目标。
【辅导特色】:
1、个性化辅导:根据学员的学习情况和需求,提供个性化的辅导服务,帮助学员解决学习中的难题。
2、全程督学:教师团队全程督学,记录考勤,跟进学习状态,确保学员紧跟教学节奏复习。
3、丰富的学习资源:提供精编教材、讲义、习题集、视频课程等丰富的学习资源,帮助学员高效复习。
考研说:考研er的脚步越走越快,总结了矩阵对角化相关的知识、注意要点及解题技巧,为你扫清数学冲刺的障碍。
矩阵的相似对角化是考研的重要考点,该部分内容既可以出大题,也可以出小题。所以同学们必须学会如何判断一个矩阵可对角化,现把该部分的知识点总结如下:
?
这里要求掌握一般矩阵相似对角化的条件,会判断给定的矩阵是否可以相似对角化,另外还要会矩阵相似对角化的计算问题,会求可逆阵以及对角阵。事实上,矩阵相似对角化之后还有一些应用,主要体现在矩阵行列式的计算或者求矩阵的方幂上,这些应用在历年真题中都有不同的体现。
1、判断方阵是否可相似对角化的条件:
(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;
(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足
(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;
(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。
【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。
2、求方阵的特征值:
(1)具体矩阵的特征值:
这里的难点在于特征行列式的计算:方法是先利用行列式的性质在行列式中制造出两个0.然后利用行列式的展开定理计算;
(2)抽象矩阵的特征值:
抽象矩阵的特征值,往往要根据题中条件构造特征值的定义式来求,灵活性较大。
?实对称矩阵的相似对角化理论
其实质还是矩阵的相似对角化问题,与一般方阵不同的是求得的可逆阵为正交阵。这里要求大家除了掌握实对称矩阵的正交相似对角化外,还要掌握实对称矩阵的特征值与特征向量的性质,在考试的时候会经常用到这些考点的。
这块的知识出题比较灵活,可直接出题,即给定一个实对称矩阵A,让求正交阵使得该矩阵正交相似于对角阵;也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A;另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值的特征向量确定出对应的特征向量,从而确定出矩阵A。
温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答
免费为您提供优质的机构
稍后会有专业老师给您回电,请保持电话畅通
易达招生网@版权所有 豫ICP备12014175号
本站文章由用户自行上传发布,如有侵权内容请及时联系我们删除。