第一、文都考研
第二、新东方考研
第三、研途考研
第四、高途考研
第五、硕成考研
第六、中公考研
第七、海文考研
第八、启航考研
第九、研趣考研
第十、新文道考研
请注意,以上排名仅供参考,并非绝对意义上的优劣排序。考生在选择考研辅导机构时,应根据自身需求(如基础水平、目标院校、备考时间、经济条件等)综合考量。建议实地考察、试听课程,并参考往届学员评价,选择最适合自己的考研辅导机构。
【招生对象】:
1、无备考基础、跨校或者跨专业,无专业课内部资料或考取学校难度较大,需要额外辅导的学员;
2、一战没过,二战、三战复试需要参加辅导的学员或二战考生,寻求封闭集训教学且包含住宿的学员;
3、自制能力比较弱,需要有学管老师监督的学员或不懂如何选择专业院校,对自己定位不清楚的学员等。
【课程优势】:
1、高三式封闭集训、经验丰富的授课老师、专业督学老师监督学习、四人间宽敞宿舍
2、教师(硕士及以上学历、熟悉出题思路);教师直击痛点,疑难随问随答;专属学管督学,研友一起努力。
【课程详情】:考研英语/政治课程辅导;考研英语/政治/数学课程辅导
【教学目的】:基础、强化、点睛,系统精讲,精细讲解科目知识、考点知识,高三式学习模式。在假期,精华部分全部掌握,通过25年研究生考试
参数估计是考研概率的最后一个考点,近几年参数估计一直是数一和数三的必考题目,必出现在整张试卷的最后一道大题,压轴出场,分值11分。虽然16年考研数学一和数学三最后一道题均未考查,但16年数学一填空题考查了区间估计,分值4分,但17年数一和数三均考查了一道大题,分值11分,迄今参数估计这个考点的重要地位仍不可撼动。跨考教育数学教研室田晓辉老师来为大家解析。
参数估计这章,数一和数三公共考点为点估计,包括矩估计和极大似然估计,另外数一还考查区间估计,包括单个正态总体的均值和方差的区间估计、两个正态总体的均值差和方差比的区间估计。
本章考研主要题型为:
(1)参数的点估计:矩估计极大似然估计估计量的评选标准(数一考查)
(2)参数的区间估计:正态总体的区间估计(数一考查)。
矩估计的基本思想:由大数定律可知样本矩、样本矩的连续函数依概率收敛于相应的总体矩、总体矩的连续函数,由此可建立总体分布中未知参数满足的方程(组),解之可得总体未知参数的点估计。这种构造点估计量的方法称为矩估计法,求得的点估计称为矩估计量(值)。其方法步骤如下:
构建未知参数的方程,通过总体的原点矩来构造
解方程,解出未知参数
用样本矩代替总体矩,得未知参数的矩估计量(值)。
极大似然估计法的基本思想:样本发生的可能性最大原则——即对未知参数进行估计时,在未知参数的变化范围内选取使“样本取此观测值”的概率最大的参数值作为未知参数的点估计。这样得到的矩估计值为最大似然估计值,相应的量为最大似然估计量。其方法步骤为:“造似然”求导数,找驻点得估计。
构造似然函数,注意,离散总体和连续总体的似然函数不同
取对数
求导数找驻点得估计。
注意,若似然方程无解,则必有导数大于或小于零,此时只要在未知参数的变化范围内找其右边界点或左边界点即可。
估计量的评选标准:无偏性、有效性、一致性,掌握其概念即可。无偏估计考查较多。
参数的区间估计:了解区间估计概念、掌握求置信区间的方法。求置信区间的一般方法步骤为:
第一步,选枢轴量定分布;
第二步,造大概率事件得不等式;
第三步,解不等式得置信区间。
以上是数一和数三对参数估计部分的全部考点,期望大家能熟练理解其思想和熟练掌握方法步骤,多练习,已达到熟练解题的要求。
概率的题目题型比较固定,考生如若能掌握考试常见题型及解题基本方法,便能胸有成竹,自信满满的将概率这科拿下,考研数学三个科目中概率最易拿分,希望考生们一定将此科目满分拿下,切不可掉以轻心。
温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答
免费为您提供优质的机构
稍后会有专业老师给您回电,请保持电话畅通
易达招生网@版权所有 豫ICP备12014175号
本站文章由用户自行上传发布,如有侵权内容请及时联系我们删除。