1.启航考研
优势:启航考研以其专业的教学团队和优质的教学质量赢得了良好的口碑。
特色:提供个性化的辅导方案和优质的教学资源,帮助学员高效备考并取得优异成绩。
2.新东方考研
优势:新东方考研以其强大的师资力量和丰富的教学经验著称,拥有完善的教学体系和优质的教学资源。
特色:提供全方位的考研辅导服务,包括公共课、专业课以及一对一辅导等,能够满足不同学员的需求。
3.新文道考研
优势:新文道考研在集训营方面表现突出,拥有专业的集训营地和优秀的教学团队。
特色:注重学员的实战能力和应试技巧的培养,通过模拟考试、真题演练等方式提高学员的考试成绩。
4.社科赛斯考研
优势:社科赛斯考研以良好的口碑赢得了广大学子的信赖,其教学质量和教学服务备受好评。
特色:提供个性化的辅导方案,根据学员的实际情况量身定制课程计划,帮助学员高效备考。
5.海文考研
优势:海文考研广受欢迎,其教学质量和师资力量均处于行业前列。
特色:注重学员的基础知识巩固和应试技巧的提升,通过系统的教学和辅导帮助学员取得优异成绩。
6.文都考研
优势:文都考研拥有多年的考研辅导经验,积累了丰富的教学经验和成功案例。
特色:提供全面的考研辅导服务,包括课程讲解、资料提供、模拟考试等,为学员提供全方位的备考支持。
7.中公考研
优势:中公考研在考研培训领域具有较高的知名度和影响力,其教学质量和教学服务得到了广大学子的认可。
特色:拥有专业的教学团队和完善的教学体系,提供个性化的辅导方案和优质的教学资源。
8.新航道考研
优势:新航道考研以其独特的教学方法和优质的教学质量赢得了学员的好评。
特色:注重学员的英语能力和综合素质的提升,通过系统的教学和辅导帮助学员提高考研英语成绩。
9.华新文登考研
优势:华新文登考研拥有较高的知名度,其教学质量和教学服务得到了学员的认可。
特色:提供全面的考研辅导服务,注重学员的基础知识巩固和应试技巧的提升。
10.跨考考研
优势:跨考考研以其丰富的教学经验和优秀的教学质量备受瞩目。
特色:注重学员的实战能力和应试技巧的培养,提供全面的考研辅导服务,包括课程讲解、模拟考试等。
总而言之,在选择考研辅导机构时,要首先了解它们的课程设置和教材,看是否能够满足自己的需求。不同的机构可能会有不同的培训时间、课程内容和教材,需要仔细比较和选择。
小编整理了高数必考定理之函数与极限,供的同学参考,帮助考生在备考的初期阶段整理总结此部分的内容。
1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.
5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
单调有界数列必有极限。
6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。
不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。
如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。
定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。
定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。反三角函数在他们的定义域内都是连续的。
定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。
定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)
推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。
1.集训畅学40天课程
基础阶在线课程+强化阶公共课集训面授课程+真题阶在线课程+冲刺阶在线课程+专业课针对性一对一课程+班主任全程督学服务+全程规划体系+全程测试体系+全程精细化答疑+择校择专业能力定位体系+全年关键环节指导体系+初试协议加强课+初试协议班专属服务+复试全科协议班服务。
2.集训畅学80/100天课程
基础阶在线课程+强化阶公共课集训面授课程+真题阶在线课程+冲刺阶公共课集训面授课程+专业课针对性一对一课程+班主任全程督学服务+全程规划体系+全程测试体系+全程精细化答疑+择校择专业能力定位体系+全年关键环节指导体系+初试协议加强课+初试协议班专属服务+复试全科协议班服务。
3.集训畅学160天课程
基础阶在线课程+半年集训公共课面授课程+专业课针对性一对一课程+班主任全程督学的服务+全程规划体系+全程测试体系+全程精细化答疑+选择学校选择专业的能力定位体系+全年关键环节的指导体系+初试协议加强课+初试协议班专属服务,以及还有复试全科协议班服务。
4.畅学全年班课程
演基础阶在线课程+强化阶在线课程+真题阶在线课程+冲刺阶在线课程+专业课针对性一对一课程+班主任全程督学服务+全程规划体系+全程测试体系+全程精细化答疑+择校择专业能力定位体系+全年关键环节指导体系+初试协议加强课+初试协议班专属服务+复试全科标准班服务。
温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答
免费为您提供优质的机构
稍后会有专业老师给您回电,请保持电话畅通
易达招生网@版权所有 豫ICP备12014175号
本站文章由用户自行上传发布,如有侵权内容请及时联系我们删除。