总站首页 | 合作模式 您好,欢迎访问易达招生网,希望本篇文章能够给您带来帮助!

电话咨询 在线客服 预约试听

易达招生网 > 动态汇总 > 海文考研老品牌专业考研集训营> 25年!珠海考研专业课辅导班排行

25年!珠海考研专业课辅导班排行
海文考研老品牌专业考研集训营 2025-09-02 09:52:38 3

25年!珠海考研专业课辅导班排行

25年!珠海考研专业课辅导班排行

一、海文考研

二、高途考研

三、研途考研

四、中公考研

五、新东方考研

六、启航考研

七、文都考研

八、新文道考研

九、学信考研

十、金程考研

以上排名仅供参考,考生在选择考研机构时,应根据自身需求(如基础水平、目标院校、自律性等)综合考量,建议实地考察、试听课程,并参考往届学员评价,选择最适合自己的考研机构。

考研辅导封闭集训营

为什么选择我们的考研班?-海文

机构优势

课程齐全:适合在校、在职考生,寄宿集训、周末面授、1对1、线上网课。

辅导效率高:专注考研辅导多年,更懂考研形势与动态;精学精练核心考点及重难点,老师传授答题技巧、应试技巧。

服务贴心:师资团队经验丰富,深入研究考研命题方向,掌握重难点,学管老师全程监督,专属答疑老师。

考研指南

线性代数考点剖析:相似对角化理论

考研说:考研er的脚步越走越快,总结了矩阵对角化相关的知识、注意要点及解题技巧,为你扫清数学冲刺的障碍。

矩阵的相似对角化是考研的重要考点,该部分内容既可以出大题,也可以出小题。所以同学们必须学会如何判断一个矩阵可对角化,现把该部分的知识点总结如下:

?

这里要求掌握一般矩阵相似对角化的条件,会判断给定的矩阵是否可以相似对角化,另外还要会矩阵相似对角化的计算问题,会求可逆阵以及对角阵。事实上,矩阵相似对角化之后还有一些应用,主要体现在矩阵行列式的计算或者求矩阵的方幂上,这些应用在历年真题中都有不同的体现。

1、判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

2、求方阵的特征值:

(1)具体矩阵的特征值:

这里的难点在于特征行列式的计算:方法是先利用行列式的性质在行列式中制造出两个0.然后利用行列式的展开定理计算;

(2)抽象矩阵的特征值:

抽象矩阵的特征值,往往要根据题中条件构造特征值的定义式来求,灵活性较大。

?实对称矩阵的相似对角化理论

其实质还是矩阵的相似对角化问题,与一般方阵不同的是求得的可逆阵为正交阵。这里要求大家除了掌握实对称矩阵的正交相似对角化外,还要掌握实对称矩阵的特征值与特征向量的性质,在考试的时候会经常用到这些考点的。

这块的知识出题比较灵活,可直接出题,即给定一个实对称矩阵A,让求正交阵使得该矩阵正交相似于对角阵;也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A;另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值的特征向量确定出对应的特征向量,从而确定出矩阵A。

温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答

易达招生网@版权所有 豫ICP备12014175号

本站文章由用户自行上传发布,如有侵权内容请及时联系我们删除。