中小学辅导
专业中小学全科辅导
小学初中高中辅导,一对一,小班课
中小学辅导是专门致力于中小学课外辅导的*品牌机构,提供中小学课程辅导服务,包括高中课程辅导,高考一对一辅导,高考全托辅导,高考补习班,初中课程辅导,小学课程辅导等,旗下包括个性化、冲刺辅导、培优、网校四大子品牌,在北京安阳郑州新乡濮阳鹤壁焦作洛阳商丘漯河许昌开封平顶山荆州荆门惠州东莞南宁九江番禺等地都有校区...
小学初中高中辅导,一对一,小班课
下面101小编为大家整理了高三复读数学答题技巧和经验,供大家参考,祝所有考生金榜题名!
1高三复读数学答题技巧
一、选择题十大速解方法
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
填空题四大速解方法
直接法、特殊化法、数形结合法、等价转化法。
二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
五、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
六、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
七、离散型随机变量的均值与方差
1、解题路线图

中小学辅导是专门致力于中小学课外辅导的*品牌机构,提供中小学课程辅导服务,包括高中课程辅导,高考一对一辅导,高考全托辅导,高考补习班,初中课程辅导,小学课程辅导等,旗下包括个性化、冲刺辅导、培优、网校四大子品牌,在北京安阳郑州新乡濮阳鹤壁焦作洛阳商丘漯河许昌开封平顶山荆州荆门惠州东莞南宁九江番禺等地都有校区。


免费为您提供优质的机构
稍后会有专业老师给您回电,请保持电话畅通
易达招生网@版权所有 豫ICP备12014175号
本站文章由用户自行上传发布,如有侵权内容请及时联系我们删除。